博客
关于我
Hat’s Words(字典树)
阅读量:620 次
发布时间:2019-03-13

本文共 1085 字,大约阅读时间需要 3 分钟。

为了解决这个问题,我们需要找出所有可以被分解为恰好两个其他词组成的词,这些词被称为“帽子的词”。我们可以使用哈希表来快速判断一个子串是否存在,从而高效地解决这个问题。

方法思路

  • 读取输入并构建哈希表:首先读取所有词,并将它们存储在一个哈希表中,以便快速查找。
  • 检查每个词:对于每个词,尝试所有可能的分割点,将其分成前后两部分,检查这两部分是否都存在于哈希表中。
  • 收集结果:将满足条件的帽子的词收集起来,排序后输出。
  • 解决代码

    #include 
    #include
    #include
    #include
    using namespace std;int main() { unordered_map
    word_map; vector
    words; string word; while (cin >> word) { words.push_back(word); word_map[word] = true; } vector
    results; for (auto &w : words) { int len = w.length(); for (int i = 1; i < len; ++i) { string prefix = w.substr(0, i); string suffix = w.substr(i); if (word_map.find(prefix) != word_map.end() && word_map.find(suffix) != word_map.end()) { results.push_back(w); break; } } } sort(results.begin(), results.end()); for (auto &r : results) { cout << r << endl; } return 0;}

    代码解释

  • 读取输入:使用unordered_map存储所有词,vector存储所有读取的词。
  • 构建哈希表:将每个词插入到哈希表中,以便快速查找。
  • 检查分割点:对于每个词,遍历所有可能的分割点,检查分割后的前缀和后缀是否都存在于哈希表中。如果存在,则将该词加入结果列表。
  • 排序和输出:对结果列表进行排序,并按顺序输出每个帽子的词。
  • 这个方法通过使用哈希表进行快速查找,确保了在合理的时间内解决问题,适用于输入规模较大的情况。

    转载地址:http://aueaz.baihongyu.com/

    你可能感兴趣的文章
    NumPy 库详细介绍-ChatGPT4o作答
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>
    NumPy 数组拼接方法-ChatGPT4o作答
    查看>>
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    numpy.linalg.norm(求范数)
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>
    numpy中的argsort的用法
    查看>>
    NumPy中的精度:比较数字时的问题
    查看>>
    numpy判断对应位置是否相等,all、any的使用
    查看>>
    Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
    查看>>
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>